Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #1
avatar+26396 
+1

Find the sum of the terms from the (n + 1) th to the m th term inclusive of an arithmetical progression whose

first term is a and whose second term is b.

If m = 13, n =   3 and the sum is 12a, find the ratio b: a.

 

Answer (m-n){a+1/2(m+n-1)(b-a)} ; 77/75

 

Formula arithmetical progression: a1=aa2=a+d

 

second term is b: a2=a+da2=ba+d=bd=ba

 

The common difference is ba

 

The sum of the member is: sn=na+n(n1)2d

 

The sum of the terms from the (n + 1) th to the m th term is: smsn=ma+m(m1)2(ba)=sm[na+n(n1)2(ba)=sn]=a(mn)+(ba2)[m(m1)n(n1)]=a(mn)+(ba2)(m2mn2+n)=a(mn)+(ba2)(m2n2m+n)=a(mn)+(ba2)[m2n2(mn)]=a(mn)+(ba2)[(mn)(m+n)(mn)]=a(mn)+(ba2)(mn)(m+n1)smsn=(mn)[a+(ba2)(m+n1)]

 

If m=13,n=3 and the sum is 12a, find the ratio b:a smsn=(mn)[a+(ba2)(m+n1)]12a=(mn)[a+(ba2)(m+n1)]12amn=a+(ba2)(m+n1)12amn=a+(b2)(m+n1)(a2)(m+n1)a(12mn1+m+n12)=b(m+n12)m=13n=3a(12101+152)=b(152)ba=(215)(12101+152)=(215)(1210+7510)=277150=277275ba=7775

 

 

laugh

Feb 8, 2018
 #2
avatar+26396 
+3

In triangle
ABC,¯AB=5,¯AC=6,
and
¯BC=7.
Circles are drawn with centers A,B, and C,
so that any two circles are externally tangent.
Find the sum of the areas of the circles.

 

 

Let ra= radius of circle A Let rb= radius of circle B Let rc= radius of circle C 

 

(1)ra+rb=5(2)rb+rc=7(3)rc+ra=6(1)+(2)+(3):2(ra+rb+rc)=5+6+72(ra+rb+rc)=18|:2ra+rb+rc=9

 

rc= ?

ra+rb=5+rc=95+rc=9rc=95rc=4

 

ra= ?

ra+rb+rc=7=9ra+7=9ra=97ra=2

 

rb= ?

ra+rb+rc=9|ra+rc=66+rb=9rb=96rb=3

 

 

The sum of the areas of the circles:

πr2a+πr2b+πr2c=π(r2a+r2b+r2c)=π(22+32+42)=π(4+9+16)=29π

 

 

laugh

Feb 8, 2018
 #1
avatar+9488 
+2
Feb 8, 2018

0 Online Users