Find the sum of the terms from the (n + 1) th to the m th term inclusive of an arithmetical progression whose
first term is a and whose second term is b.
If m = 13, n = 3 and the sum is 12a, find the ratio b: a.
Answer (m-n){a+1/2(m+n-1)(b-a)} ; 77/75
Formula arithmetical progression: a1=aa2=a+d
second term is b: a2=a+da2=ba+d=bd=b−a
The common difference is b−a
The sum of the member is: sn=n⋅a+n(n−1)2⋅d
The sum of the terms from the (n + 1) th to the m th term is: sm−sn=m⋅a+m(m−1)2⋅(b−a)⏟=sm−[n⋅a+n(n−1)2⋅(b−a)⏟=sn]=a(m−n)+(b−a2)[m(m−1)−n(n−1)]=a(m−n)+(b−a2)(m2−m−n2+n)=a(m−n)+(b−a2)(m2−n2−m+n)=a(m−n)+(b−a2)[m2−n2−(m−n)]=a(m−n)+(b−a2)[(m−n)(m+n)−(m−n)]=a(m−n)+(b−a2)(m−n)(m+n−1)sm−sn=(m−n)[a+(b−a2)(m+n−1)]
If m=13,n=3 and the sum is 12a, find the ratio b:a sm−sn=(m−n)[a+(b−a2)(m+n−1)]12a=(m−n)[a+(b−a2)(m+n−1)]12am−n=a+(b−a2)(m+n−1)12am−n=a+(b2)(m+n−1)−(a2)(m+n−1)a(12m−n−1+m+n−12)=b(m+n−12)m=13n=3a(1210−1+152)=b(152)ba=(215)(1210−1+152)=(215)(12−10+7510)=2⋅77150=2⋅772⋅75ba=7775
