Questions   
Sort: 
 #68
avatar+118723 
+5

@@ End of Day Wrap  Mon 15/6/15   Sydney, Australia Time   7:05am   ♪ ♫

 

Hello everyone,

 

It has been a very quiet two days.  I am told that is because the U.S students are mostly on a long summer break. 

 

Anyway, there have still been lots of questions and our wondeful answerers were: CPhill, Civonamzuk, Alan Radix, Pyramid, Fiora, MathsGod1 and BrittanyJ.  Thank you all  

 

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts:

 

FTJ means 'For the juniors' 

1) Perfect numbers                                                       Thanks CPhill

2) Order of operation     FTJ                                          Thanks anon

3) Arithmetic progression.  A little harder than ususal      Melody

4) Trig equations continued   (hard one)                        The most recent thank you to Heureka  

 

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 15, 2015
 #59
avatar+118723 
0

Tues 16/6/15

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts: 

FTJ means 'For the juniors' 

1)  What is the minimum number of people?               Thanks Alan

2)  Product of two vectors in polar form                      Thanks Alan and Bertie

3)  Fractional and negative indices                             Thanks Radix and Melody

4)  Simultaneous equations        Middle high level       Thanks Pyramid

5)  Close estimation for a huge number                      Melody

6)  Graphing translation                                            Thanks CPhill

7)  Fraction division     FTJ                                         Thanks CPhill

8)  Equations with indicies                                          Thanks CPhill

9)  Hyperbola question 1                                            Thanks Melody and Heureka

10) Hyperbola question 2                                           Thanks Melody and Heureka

 

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 15, 2015
 #7
avatar+26400 
+5

how do you solve 2sin(theta) = cos(theta/3)  ?

 

$$\small{\text{$
\boxed{
~~ 2\sin{(\theta)} = \cos \left( \frac{ \theta}{3}\right) \quad \mathrm{~we~set~} \theta = 3\alpha \quad
2\sin(3\alpha ) = \cos{( \alpha )}
~~}
$}}$$

 

$$\small{\text{$
\begin{array}{rcl|rrcl|l}
&&&&&&& \mathrm{Formula:}\\
2\sin(3\alpha ) &=& \cos{( \alpha )}
&(1)&\sin{(3\alpha)}&=&
\sin{(\alpha+2\alpha)}=
\sin{(\alpha)}\cos{(2\alpha)} +\cos{(\alpha)}\sin{(2\alpha)}
&\cos{2\alpha} = 1-2\sin^2{(\alpha)} \\
&&&&\sin{(3\alpha)}&=&
\sin{(\alpha)}(1-2\sin^2{(\alpha)}) +2\sin{(\alpha)}\cos^2{(\alpha)}
&\sin{2\alpha} = 2\sin{(\alpha)}\cos{(\alpha)} \\
&&&&\sin{(3\alpha)}&=&
\sin{(\alpha)}(1-2\sin^2{(\alpha)}) +2\sin{(\alpha)}( 1-\sin^2{(\alpha)} )
&\cos^2{\alpha} = 1-\sin^2{(\alpha)} \\
&&&&& \cdots && \\
&&&&\sin{(3\alpha)}&=&
\sin{(\alpha)} \left[(3-4\sin^2{(\alpha)} \right]
&\\
2\sin{(\alpha)} \left[(3-4\sin^2{(\alpha)} \right] &=& \cos{( \alpha )}
&&&&&\\
2\left[(3-4\sin^2{(\alpha)} \right] &=& \cot{( \alpha )}
&&&&&\\
& \cdots &
&&&&&\\
8\sin^2{(\alpha)} &=& 6-\cot{( \alpha )}
&&&&& \frac{1}{ \sin^2{(\alpha)} } = 1+\cot^2{(\alpha)}\\
8 &=& \left[ (6-\cot{( \alpha )} \right] \left[1+\cot^2{(\alpha)} \right]
&&&&&\\
& \cdots &&&&&&\\
\cot^3{(\alpha)}-6\cot^2{(\alpha)}+\cot{(\alpha)}+2 &=& 0 &&&&&\\
& \alpha=\frac{\theta}{3} &&&&&&\\
\cot^3{(\frac{\theta}{3})}-6\cot^2{(\frac{\theta}{3})}+\cot{(\frac{\theta}{3})}+2 &=& 0 &&&&&\\
\end{array}
$}}$$

 

$$\small{\text{$
\boxed{~~
\cot^3{\left(\frac{\theta}{3}\right)}
-6\cot^2{\left(\frac{\theta}{3}\right)}+\cot{\left(\frac{\theta}{3}\right)}+2 = 0
~~}
$}}\\\\\\
\small{\text{$
\mathrm{substitute:~~}
\boxed{~~u = \cot{ \left(\frac{\theta}{3} \right) }=\frac{1}{\tan{ \left(\frac{\theta}{3} \right) }}
\qquad \theta = 3\arctan{\left(~\frac{1}{u}~\right)} \pm 3\pi \cdot k \quad k=0,1,2,3\cdots ~~ }
$}}\\ \\
\small{\text{$
\boxed{~~u^3 - 6u^2 + u +2 = 0 ~~}
$}}\\\\
\small{\text{$
\begin{array}{rclcc}
u_1 &=& 5.766 435 484
& \theta_1=3\arctan{(\frac{1}{u_1})}
& \theta_1=0.515 128 919 \pm3\pi\cdot k\\\\
u_2 &=& -0.483 611 621
& \theta_2=3\arctan{(\frac{1}{u_2})}
& \theta_2=-3.361 035 503 \pm3\pi\cdot k\\\\
u_3 &=& 0.717 176 136
& \theta_3=3\arctan{(\frac{1}{u_3})}
& \theta_3=2.845 906 583 \pm3\pi\cdot k\\\\
\end{array}
$}}$$

 

Compare with wolframalpha.com http://www.wolframalpha.com/input/?i=2*sin%28x%29%3Dcos%28x%2F3%29 :

$$\small{\text{$
\mathrm{we~ have~ seen:~~}
\boxed{~~
\cot^3{ \left( \frac{\theta}{3} \right) }
-6\cot^2{ \left( \frac{\theta}{3} \right) }
+ \cot{ \left( \frac{\theta}{3} \right) }
+2 = 0 ~~}
$}}\\\\\\$$

$$\small{\text{$
\begin{array}{lrcl}
\mathrm{we~set~}&\cot{\left(\frac{\theta}{3}\right)} &=&
\dfrac
{1-\tan^2{ (\frac{\theta}{6}) } }
{ 2\tan{ (\frac{\theta}{6}) }}\\\\
\mathrm{and~use~} x= \tan{ (\frac{\theta}{6}) }\\\\
\mathrm{then~}&\cot{\left(\frac{\theta}{3}\right)} &=&
\dfrac{1-x^2}{2x} \\\\
\mathrm{we~substitute}&
\left(\dfrac{1-x^2}{2x}\right)^3
-6\left(\dfrac{1-x^2}{2x}\right)^2
+\left(\dfrac{1-x^2}{2x}\right)
+2 &=& 0 \\\\
&
\dfrac{ \left( 1-x^2 \right)^3 }{8x^3}
-6\dfrac{ \left( 1-x^2 \right)^2 }{4x^2}
+ \dfrac{ \left( 1-x^2 \right) }{2x}
+ 2 &=& 0 \qquad |\qquad \cdot 8x^3\\\\
&
\left( 1-x^2 \right)^3
- 12x \left( 1-x^2 \right)^2
+ 4x^2 \left( 1-x^2 \right)
+ 16x^3 &=& 0\\\\
&&\cdots\\\\
&
1-3x^2+3x^4-x^6-12x+24x^3-12x^5+4x^2-4x^4+16x^3 &=& 0\\\\
\mathrm{finally}& \mathbf{x^6+12x^5+x^4-40x^3-x^2+12x-1} & \mathbf{=}& \mathbf{0}\\\\
\mathrm{\textcolor[rgb]{1,0,0}{wolframalpha.com~solution:}}& \mathbf{x^6+12x^5+x^4-40x^3-x^2+12x-1} & \mathbf{=}& \mathbf{0}\\\\
\mathrm{with}& \frac{\theta}{6} = \arctan{(x)}\pm\pi\cdot k\\\\
&
\theta = 6[\arctan{(x)}\pm\pi\cdot k]\\\\
&
\theta = 6\arctan{(x)}\pm 6\pi\cdot k\\\\
\end{array}
$}}$$

 

Jun 15, 2015

0 Online Users